Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Intervalo de año de publicación
1.
Animals (Basel) ; 14(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473100

RESUMEN

The effects of isochlorogenic acid (ICGA) on ewes rumen environment, microbial diversity, and immunity at different physiological stages (estrus, pregnancy and lactation) were studied in this experiment. Twenty healthy female Hu lambs of 1.5 months with similar body weight (17.82 ± 0.98 kg) and body condition were selected and randomly divided into two groups: the control group (CON) and the ICGA group (ICGA). The lambs of CON were fed a basal diet, while the lambs of ICGA were supplemented with 0.1% ICGA based on the basal diet. Lambs rumen fermentation characteristics, microbial diversity and immunity at estrus, pregnancy, and lactation stages were determined and analyzed, respectively. The results showed that the rumen pH in CON increased first and then decreased as lambs grew (p < 0.05). However, it showed the opposite change in ICGA. The content of ammonia nitrogen (NH3-N) showed the highest at estrus stage in both groups, but it was significantly higher in ICGA than that in CON (p < 0.05). The Acetic acid/propionic acid (A/P) ratio at estrus stage and the volatile fatty acids (VFAs) at pregnancy stage in ICGA were significantly higher than those of the CON (p < 0.05). The 16S rDNA sequencing analysis showed that the Shannon, Chao 1 and ACE indexes of the ICGA were significantly higher than those of the CON both at estrus and lactation stages (p < 0.05), while they showed higher at the pregnancy stage in CON (p > 0.05). Principal component analysis (PCA) showed that there were significant differences in rumen microorganism structure between CON and ICGA at all physiological stages (p < 0.01). At the phylum level, compared with the CON, Firmicutes relative abundance of three physiological stages decreased (p > 0.05) while Bacteroidota increased (p > 0.05). The relative abundance of Synergistota at estrus stage and Patescibacteria at the lactation stage increased significantly too (p < 0.05). At the genus level, compared with the CON, the relative abundance of Prevotella at three stages showed the highest (p > 0.05), while the relative abundance of Succiniclasticum, unclassified_Selenomonadaceae and Rikenellaceae_RC9_gut_group showed different abundances at different physiological stages in ICGA. Compared with the CON, the lambs of the ICGA showed higher blood IgG, IgM, and TNF- α contents at three physiological stages and higher IL-6 contents at pregnancy stage (p < 0.05). Conclusion: Adding ICGA could regulate ewes rumen fermentation mode at different physiological stages by increasing rumen NH3-N at estrus, VFAs at pregnancy, and the ratio of A/P at lactation. It optimizes rumen microbial flora of different physiological stages by increasing Bacteroidota relative abundance while reducing Firmicutes relative abundance, maintaining rumen microbial homeostasis at pregnant stage, increasing the number of beneficial bacteria in later lactating and ewes blood immunoglobulins content at three physiological stages.

2.
Ying Yong Sheng Tai Xue Bao ; 35(1): 49-54, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38511439

RESUMEN

To reveal the key factors influencing vegetation productivity in sandy lands, we conducted a comprehensive analysis of vegetation productivity on regional scale, pixel scale, and plot scale of the sandy lands in northwes-tern Liaoning Province, based on soil physicochemical data, topographical data, climate data, and the intrinsic characteristics of vegetation. On the regional scale, we established a random forest model to explore the impact of topographical factors, climate factors, and vegetation characteristics on vegetation productivity. On the pixel scale, we performed a correlation analysis between vegetation cover and climate factors. On the plot scale, we combined the physicochemical properties of 234 soil samples with topographical factors and vegetation characteristics, and utilized the random forest model to calculate the importance values of each factor. The results showed that soil nutrients could explain 24.8% of the spatial variation in net primary productivity when other factors were excluded. When introducing topographical factors into the model, the model could explain 40% variation of net primary productivity. When further incorporating fractional vegetation coverage and leaf area index into the model, the model could explain 72.8% variation of net primary productivity. Our findings suggested that fractional vegetation coverage and leaf area index were the most influential factors affecting vegetation productivity in this area. Topographical factors ranked second, followed by climate factors, which had a relatively small impact.


Asunto(s)
Ecosistema , Arena , Clima , Suelo/química , China , Cambio Climático
3.
Ying Yong Sheng Tai Xue Bao ; 35(1): 55-61, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38511440

RESUMEN

Improving soil fertility is one of the key approaches for ecological restoration of the wind-sand area in northwest Liaoning Province. Taking wind-sand area in northwest Liaoning Province as test object, we conducted a fertilization experiment with treatments of inorganic fertilizer (nitrogen, phosphorus and potassium fertilizers), organic fertilizer, combined application of organic and inorganic fertilizers, and organic fertilizer combined with a biologically organic matrix (γ-polyglutamic acid), and no fertilizer as control. We measured soil organic matter content and extractable cations concentrations, vegetation coverage, and biomass under different fertilization treatments and determine the suitable fertilization mode. The results showed that compared to the control, inorganic fertilizer rapidly increased vegetation coverage and biomass, but high levels of inorganic fertilizer (150 kg N·hm-2) led to soil acidification and Ca2+ leaching. Organic fertilizer increased soil organic matter content, exchangeable K+, Ca2+, and Mg2+ contents, as well as coverage and biomass vegetation, especially combined with γ-polyglutamic acid. Overall, the combination of low levels of inorganic fertilizer (50 kg N·hm-2) and moderate levels of organic fertilizer (30000 kg·hm-2) was the best fertilization practice for the rapid and stable restoration of grassland in wind-sand area. Moreover, the extra addition of γ-polyglutamic acid (60 kg·hm-2)could effectively improve soil fertility.


Asunto(s)
Agricultura , Suelo , Agricultura/métodos , Fertilizantes , Arena , Pradera , Ácido Poliglutámico , China , Nitrógeno/análisis , Fertilización
4.
Sci Total Environ ; 923: 171440, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442763

RESUMEN

Snowpack is closely related to vegetation green-up in water-limited ecosystems, and has effects on growing-season ecosystem processes. However, we know little about how changes in snowpack depth and melting timing affect primary productivity and plant community structure during the growing season. Here, we conducted a four-year snow manipulation experiment exploring how snow addition, snowmelt delay and their combination affect aboveground net primary productivity (ANPP), species diversity, community composition and plant reproductive phenology in seasonally snow-covered temperate grassland in northern China. Snow addition alone increased soil moisture and nutrient availability during early spring, while did not change plant community structure and ANPP. Instead, snowmelt delay alone postponed plant reproductive phenology, and increased ANPP, decreased species diversity and altered species composition. Grasses are more sensitive to changes in snowmelt timing than forbs, and early-flowering forbs showed a higher sensitivity compared to late-flowering forbs. The effect of snowmelt delay on ANPP and species diversity was offset by snow addition, probably because the added snow unnecessarily lengthens the snow-covering duration. The disparate effects of changes in snowpack depth and snowmelt timing necessitate their discrimination for more mechanistic understanding on the effects of snowpack changes on ecosystems. Our study suggests that it is essential to incorporate non-growing-season climate change events (in particular, snowfall and snowpack changes) to comprehensively disclose the effects of climate change on community structure and ecosystem functions.


Asunto(s)
Ecosistema , Pradera , Plantas , Cambio Climático , Congelación , Nieve , Estaciones del Año
5.
Ecology ; 105(2): e4220, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037285

RESUMEN

Plant traits can be helpful for understanding grassland ecosystem responses to climate extremes, such as severe drought. However, intercontinental comparisons of how drought affects plant functional traits and ecosystem functioning are rare. The Extreme Drought in Grasslands experiment (EDGE) was established across the major grassland types in East Asia and North America (six sites on each continent) to measure variability in grassland ecosystem sensitivity to extreme, prolonged drought. At all sites, we quantified community-weighted mean functional composition and functional diversity of two leaf economic traits, specific leaf area and leaf nitrogen content, in response to drought. We found that experimental drought significantly increased community-weighted means of specific leaf area and leaf nitrogen content at all North American sites and at the wetter East Asian sites, but drought decreased community-weighted means of these traits at moderate to dry East Asian sites. Drought significantly decreased functional richness but increased functional evenness and dispersion at most East Asian and North American sites. Ecosystem drought sensitivity (percentage reduction in aboveground net primary productivity) positively correlated with community-weighted means of specific leaf area and leaf nitrogen content and negatively correlated with functional diversity (i.e., richness) on an intercontinental scale, but results differed within regions. These findings highlight both broad generalities but also unique responses to drought of community-weighted trait means as well as their functional diversity across grassland ecosystems.


Asunto(s)
Ecosistema , Pradera , Sequías , Plantas , América del Norte , Asia Oriental , Nitrógeno
6.
Front Microbiol ; 14: 1247609, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664115

RESUMEN

Tibetan sheep can utilize high fiber feeds well. However, the mechanisms of rumen microbiota and metabolites in response to different roughage in a housed environment are still unclear. We fed Tibetan sheep with three different roughage diets: 50% whole corn silage (TS), 50% wheatgrass group (TW), and 25% each of whole corn silage and wheatgrass (TM). Subsequently, meat traits, rumen contents 16S rRNA and metabolomics were studied. The results showed that feeding wheat straw to Tibetan sheep significantly increased the abundance of bacteria such as Ruminococcus and Succiniclasticum in the rumen. These microorganisms significantly increased metabolites such as beta-alanyl-L-lysine, butanoic acid and prostaglandin E2. Eventually, production performance, such as carcass weight and intramuscular fat and meat quality characteristics, such as color and tenderness were improved by altering the rumen's amino acid, lipid and carbohydrate metabolism. This study demonstrated that including 25% wheatgrass and 25% whole corn silage in the diet improved the performance of Tibetan sheep, revealing the effect of the diet on the performance of Tibetan sheep through rumen microorganisms and metabolites.

7.
Water Res ; 245: 120544, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703752

RESUMEN

Internal nutrient loading in shallow lakes has long been known as a key driver of eutrophication, especially after external loading reductions. Earlier efforts have been made to quantity the size and potential release of internal nutrient pools in lakes. Yet, links among substrates, microbial processes, and the size and actual release of internal nutrient pools remain largely unclear. To assess the links, sediment organic matter in Lake Taihu, China, was characterized by combining optical measurements, and lake-wide sediment gross nitrogen (N) transformations were measured using the stable isotope (15N) dilution technique. Meanwhile, respirations and nutrient fluxes across the sediment-water interface (SWI) were measured by conducting intact core continuous-flow incubations. The cause-effect relationships among sediment physicochemical parameters (especially organic matter properties), gross N transformations, extractable nutrient concentrations, and nutrient fluxes across the SWI were revealed by partial least square path models. Results showed that environmental controls on the N transformation rates at different seasons varied, with sediment-derived dissolved organic matter abundance being more important than other variables in driving the rates during summer blooms. This study put a step toward revealing the significant positive effects of sediment organic matter mineralization on porewater nutrient concentrations and then on nutrient fluxes across the SWI at late season. The significant positive correlation between the gross N mineralization rates and ammonium fluxes across the SWI and the estimated considerable volume of net N mineralization in summer further suggested that algal blooms can get substantial inorganic N from sediment N mineralization during the lake N limitation period. Overall, this paper presents new insights into the substrates- and microbial process-driven internal nutrient loading of shallow lakes, which is the fundamental driving force of internal nutrient loading formation.


Asunto(s)
Lagos , Fósforo , Lagos/química , Fósforo/análisis , Sedimentos Geológicos , Agua , Nutrientes , Nitrógeno/análisis , Eutrofización , China , Monitoreo del Ambiente
8.
Org Biomol Chem ; 21(32): 6493-6497, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37529886

RESUMEN

In this work, we wish to present a nickel-catalyzed divergent ring-contraction and ring-opening/isomerization reaction of tert-cyclobutanols. The key to control these two different reaction pathways is to choose appropriate boronic acid, where the use of phenylboronic acid and pyrimidin-5-ylboronic acid enables a ring-contraction and ring-opening reaction/isomerization, respectively. Both cyclopropyl aryl methanones and 1-aryl butan-1-ones could be selectively obtained.

9.
Life Sci ; 328: 121892, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364634

RESUMEN

The apelin receptor (APJ) and the opioid-related nociceptin receptor 1 (ORL1) are family A G protein-coupled receptors that participate in a variety of physiological processes. The distribution and function of APJ and ORL1 in the nervous system and peripheral tissues are similar; however, the detailed mechanism of how these two receptors modulate signaling and physiological effects remains unclear. Here, we examined whether APJ and ORL1 form dimers, and investigated signal transduction pathways. The endogenous co-expression of APJ and ORL1 in SH-SY5Y cells was confirmed by western blotting and RT-PCR. Bioluminescence and fluorescence resonance energy transfer assays, as well as a proximity ligation assay and co-immunoprecipitation experiments, demonstrated that APJ and ORL1 heterodimerize in HEK293 cells. We found that the APJ-ORL1 heterodimer is selectively activated by apelin-13, which causes the dimer to couple to Gαi proteins and reduce the recruitment of GRKs and ß-arrestins to the dimer. We showed that the APJ-ORL1 dimer exhibits biased signaling, in which G protein-dependent signaling pathways override ß-arrestin-dependent signaling pathways. Our results demonstrate that the structural interface of the APJ-ORL1 dimer switches from transmembrane domain TM1/TM2 in the inactive state to TM5 in the active state. We used mutational analysis and BRET assays to identify key residues in TM5 (APJ L2185.55, APJ I2245.61, and ORL1 L2295.52) responsible for the receptor-receptor interaction. These results provide important information on the APJ-ORL1 heterodimer and may assist the design of new drugs targeting biased signaling pathways for treatment of pain and cardiovascular and metabolic diseases.


Asunto(s)
Neuroblastoma , Humanos , Apelina/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides/genética , Receptores Opioides/metabolismo , Transducción de Señal
10.
Zhen Ci Yan Jiu ; 48(2): 165-71, 2023 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-36858413

RESUMEN

OBJECTIVE: To study whether electroacupuncture (EA) of "Zusanli" (ST36) combined with "Tianshu" (ST25) has a synergistic effect in regulating the colonic function and autonomic nerve balance in rats with irritable bowel syndrome (IBS). METHODS: Male Wistar rats were randomly divided into control, model, EA-ST36, and EA-ST36+ST25 groups, with 14 rats in each group. The IBS model was established by using water avoidance stress method. The visceral hypersensitivity was measured using the abdominal wall retraction reflex (AWR). The rectus abdominis electromyogram (EMG), intestinal electrical activity, and electrocardiogram (ECG) were recorded using a PowerLab data acquisition and analysis system. The contents of serum cAMP and cGMP were determined by ELISA, the expression levels of colonic tyrosine hydroxylase (TH) and choline acetyl-transferase (ChAT) proteins were determined by immunofluorescence staining and Western blot, respectively. RESULTS: Compared with the control group, the model group had an evident increase in the levels of AWR, LF, LF/HF, ChAT protein expression, cAMP and cGMP contents and cAMP/cGMP ratio (P<0.001, P<0.05), and a marked decrease in the levels of HF, frequency of slow waves of intestinal EMG, visceral pain threshold (PT), immunoactivity and expression of TH protein (P<0.05, P<0.001). In contrast to the model group, the levels of AWR, LF, LF/HF, ChAT protein expression and immunoactivity, cAMP and cGMP contents and ratio of cAMP/cGMP were significantly reduced (P<0.001, P<0.05, P<0.01), whereas the levels of frequency of slow waves of intestinal EMG, PT, and the immunoactivity and expression of TH were considerably increased (P<0.001, P<0.05) in both EA-ST36 and EA-ST36+ST25 groups. CONCLUSION: EA of both ST36 and ST36+ST25 can relieve visceral pain, and reduce sympathetic activity to improve autonomic nerve balance, but without apparent synergistic effect between EA-ST36 and EA-ST25 in rats with IBS.


Asunto(s)
Electroacupuntura , Síndrome del Colon Irritable , Masculino , Ratas , Animales , Ratas Wistar , Defecación , Vías Autónomas , GMP Cíclico
11.
Ying Yong Sheng Tai Xue Bao ; 34(1): 249-256, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36799401

RESUMEN

Theoretical researches and practices on the life community of mountain-water-forest-farmland-lake-grassland-sandland mosaic and its protection and restoration have been gradually developed in China, which demands the support of a systematic disciplinary theory. Landscape ecology, as an interdisciplinary science of geography and ecology, can meet such demand thanks to its macroscopic spatial theory and technical system. Here, landscape ecology is taken as the supporting discipline of holistic protection and restoration for mountain-water-forest-farmland-lake-grassland-sandland mosaic. Firstly, we clarified that life community of mountain-water-forest-farmland-lake-grassland-sandland is a heterogeneously mosaic landscape, which bears all the characteristics of landscape and thus follows the principles of landscape ecology. Secondly, we expounded how the basic principles of landscape-ecological construction could be applied to the planning and evaluation of holistic protection and restoration for mountain-water-forest-farmland-lake-grassland-sandland mosaic. Finally, we summarized the new trend of landscape-ecological construction research, listed the theoretical and practical problems to be solved, and discussed how the projects of holistic protection and restoration for the mountain-water-forest-farmland-lake-grassland-sandland mosaic can provide a variety of practices for seeking the solutions. The combination of landscape ecology and practical restoration projects would generate effective solutions to realize sustainable development in terms of ecology, economy, and society in China and even the whole world.


Asunto(s)
Ecología , Pradera , Granjas , Conservación de los Recursos Naturales , Lagos , Agua , Bosques , China , Ecosistema
12.
Artículo en Inglés | MEDLINE | ID: mdl-36767061

RESUMEN

The Party's 14th Five-Year-Plan and the 2035 Visionary Goals point out that green and sustainable development is the direction of China's road in the present age, and provide a theoretical basis for further improvement of ecological civilization. "Sponge city" is a new type of urban construction idea in China; moving from pilot to vigorous implementation at present, it is an important element of China's promotion of green development and development of ecological civilization. At present, a number of sponge city pilot projects have been built in China, and evaluation of their effects is already a matter of urgency. The overall planning of China's current policies in sponge city construction and the specific analyses conducted by experts from both subjective and objective aspects have not been able to completely fill the gap in this regard, thus making it particularly urgent to conduct in-depth studies. Based on this, this paper discusses the performance assessment of sponge cities in China on the basis of the prediction and analysis of the development trend of sponge cities in China. In the performance assessment system, the correctness and timeliness of the index system should be considered in terms of practical effects; in the city performance assessment, the ideas of new city development such as low-carbon cities and smart cities should be combined to build a comprehensive and multi-perspective intelligent assessment system, so as to provide a strong boost to promote the development of city construction and its evaluative research. Firstly, a system-dynamic model is applied to sort out and combine its internal operation mechanism, and a set of evaluation systems based on the ecological philosophical perspective of the sponge city and urban sustainable development performance is established. Second, to improve the accuracy of the research results, parallelism tests and robustness analysis were conducted on this performance index evaluation system. The study's results show that sponge city construction has achieved good results in sustainable urban development and has contributed to future development.


Asunto(s)
Carbono , Desarrollo Sostenible , Ciudades , China , Civilización , Desarrollo Económico
13.
J Agric Food Chem ; 71(2): 1234-1245, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36601774

RESUMEN

The beef quality significantly varies between breeds. Pingliang Red Cattle resembles Wagyu in fat deposition and flavor. To screen key factors affecting beef quality, we performed meat quality trait testing, RNA-seq, and metabolomics on the longissimus dorsi of Pingliang Red Cattle, Wagyu cross F1 generation, and Simmental cattle. The gene and metabolite expression profiles were similar between Pingliang Red Cattle and Wagyu cross F1 generation. Genes such as FASN, ACACA, PLIN1, and FABP4 were significantly upregulated in the Pingliang Red Cattle and Wagyu cross F1 generation (P < 0.05). Similarly, numerous metabolites, such as 3-iodo-l-tyrosine, arachidonic acid, and cis-aconitate, which may improve the beef quality such as fat deposition and tenderness, were found in higher levels in the Pingliang Red Cattle and Wagyu cross F1 generation. This study revealed differences in the transcriptional and metabolic levels between Pingliang Red Cattle and premium beef breeds, suggesting that Pingliang Red Cattle harbors the genetic potential for breeding high-grade beef cattle.


Asunto(s)
Carne , Transcriptoma , Bovinos/genética , Animales , Carne/análisis , Fenotipo , Metaboloma , Músculo Esquelético/metabolismo
14.
PeerJ ; 11: e14689, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36718442

RESUMEN

Background: Stevia straw is a byproduct of sugar crop stevia. It is a good feed material because of richness in nutrients and active substances (steviosides and flavonoids). However, due to improper utilization such as piling, burning and so on, it became a large amount of wasted straw resources and lead to environmental pollution. Methods: We added 0%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0% and 1.5% of stevia stalk to study the effects of different stevia stalk concentrations on nutrient utilization and rumen fermentation in sheep (based on sheep diet). In vitro fermentation method was used, with 17 repetitions for each treatment. All fermentation substrate based on sheep diet with different stevia stalk concentrations were fermented for 2 h, 6 h, 12 h, 24 h and 48 h, then the gas production, dry matter degradability (DMD), crude protein degradability (CPD), neutral detergent fiber degradability (NDFD), acid detergent fiber degradability (ADFD), pH, ammonia nitrogen (NH3-N) and volatile fatty acids (VFAs) were determined. Results: The results showed that at different fermentation time, the change trend of gas production in each teatment was basically same, but the maximum occurred in 1.0% treatment at 48 h. The DMD, CPD, NDFD and ADFD of sheep diets increased with fermentation time increasing, especially the CPD48h, NDFD48h and ADFD48h of diets in 0.8%, 1.0% and 1.5% treatments were significantly higher than those in control (P < 0.05). The pH of fermentation substrate in each treatment remained within the normal range of 6.21∼7.25. NH3-N24h-48hin 0.8%, 1.0% and 1.5% treatments were higher than that in control. At 6 h-12 h, the total acid content of 0.8% and 1.0% treatments were significantly higher than those of other treatments (P < 0.05), it reached the highest in 1.0% treatment. According to overall evaluation, effect ranking of stevia stalk on sheep nutrient utilization was as follows: 1.0% >0.8% >1.5% >0.4% >0.6% >0.2%. Overall, 1.0% stevia stalk could promote nutrient degradation and sheep rumen fermentation.


Asunto(s)
Rumen , Stevia , Ovinos , Animales , Rumen/metabolismo , Fermentación , Detergentes/metabolismo , Alimentación Animal/análisis , Digestión , Nutrientes
15.
Ecology ; 104(2): e3920, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36416074

RESUMEN

Recurrent droughts are an inevitable consequence of climate change, yet how grasslands respond to such events is unclear. We conducted a 6-year rainfall manipulation experiment in a semiarid grassland that consisted of an initial 2-year drought (2015-2016), followed by a recovery period (2017-2018) and, finally, a second 2-year drought (2019-2020). In each year, we estimated aboveground net primary productivity (ANPP), species richness, community-weighted mean (CWM) plant traits, and several indices of functional diversity. The initial drought led to reduced ANPP, which was primarily driven by limited growth of forbs in the first year and grasses in the second year. Total ANPP completely recovered as the rapid recovery of grass productivity compensated for the slow recovery of forb productivity. The subsequent drought led to a greater reduction in total ANPP than the initial drought due to the greater decline of both grass and forb productivity. The structural equation models revealed that soil moisture influenced ANPP responses directly during the initial drought, and indirectly during the subsequent drought by lowering functional diversity, which resulted in reduced total ANPP. Additionally, ANPP was positively influenced by CWM plant height and leaf nitrogen during the recovery period and recurrent drought, respectively. Overall, the greater impact of the second drought on ecosystem function than the initial drought, as well as the underlying differential mechanism, underscores the need for an understanding of how increased drought frequency may alter semiarid grassland functioning.


Asunto(s)
Ecosistema , Pradera , Sequías , Suelo , Poaceae
16.
Front Microbiol ; 14: 1293720, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164400

RESUMEN

Grazing exclusion (GE) is an effective measure for restoring degraded grassland ecosystems. However, the effect of GE on methane (CH4) uptake and production remains unclear in dominant bacterial taxa, main metabolic pathways, and drivers of these pathways. This study aimed to determine CH4 flux in alpine meadow soil using the chamber method. The in situ composition of soil aerobic CH4-oxidizing bacteria (MOB) and CH4-producing archaea (MPA) as well as the relative abundance of their functional genes were analyzed in grazed and nongrazed (6 years) alpine meadows using metagenomic methods. The results revealed that CH4 fluxes in grazed and nongrazed plots were -34.10 and -22.82 µg‧m-2‧h-1, respectively. Overall, 23 and 10 species of Types I and II MOB were identified, respectively. Type II MOB comprised the dominant bacteria involved in CH4 uptake, with Methylocystis constituting the dominant taxa. With regard to MPA, 12 species were identified in grazed meadows and 3 in nongrazed meadows, with Methanobrevibacter constituting the dominant taxa. GE decreased the diversity of MPA but increased the relative abundance of dominated species Methanobrevibacter millerae from 1.47 to 4.69%. The proportions of type I MOB, type II MOB, and MPA that were considerably affected by vegetation and soil factors were 68.42, 21.05, and 10.53%, respectively. Furthermore, the structural equation models revealed that soil factors (available phosphorus, bulk density, and moisture) significantly affected CH4 flux more than vegetation factors (grass species number, grass aboveground biomass, grass root biomass, and litter biomass). CH4 flux was mainly regulated by serine and acetate pathways. The serine pathway was driven by soil factors (0.84, p < 0.001), whereas the acetate pathway was mainly driven by vegetation (-0.39, p < 0.05) and soil factors (0.25, p < 0.05). In conclusion, our findings revealed that alpine meadow soil is a CH4 sink. However, GE reduces the CH4 sink potential by altering vegetation structure and soil properties, especially soil physical properties.

17.
Artículo en Inglés | MEDLINE | ID: mdl-36498168

RESUMEN

The question of how to proactively respond to population aging has become a major global issue. As a country with the largest elderly population in the world, China suffers a stronger shock from population aging, which makes it more urgent to transform its industrial and economic development model. Concretely, in the context of the new macroeconomic environment that has undergone profound changes, the shock of population aging makes the traditional industrial structure upgrading model (driven by large-scale factor inputs, imitation innovation and low-cost technological progress, and strong external demand) more unsustainable, and China has an urgent need to transform it to a more sustainable one. Only with an in-depth analysis of the influence mechanism of population aging on the upgrading of industrial structure can we better promote industrial structure upgrading under the impact of population aging. Therefore, six MSVAR models were constructed from each environmental perspective based on data from 1987 to 2021. The probabilities of regime transition figures show that the influencing mechanisms have a clear two-regime feature from any view; specifically, the omnidirectional environmental transition occurs in 2019. A further impulse-response analysis shows that, comparatively speaking, under the new environment regime the acceleration of population aging (1) aggravates the labor shortage, thus narrowing the industrial structure upgrading ranges; (2) has a negative, rather than positive, impact on the capital stock, but leads to a cumulative increase in industrial structure upgrading; (3) forces weaker technological progress, but further leads to a stronger impact on the industrial structure upgrading; (4) forces greater consumption upgrading, which further weakens industrial structure upgrading; (5) narrows rather than expands the upgrading of investment and industrial structures; and (6) narrows the upgrading of export and industrial structures. Therefore, we should collaboratively promote industrial structure upgrading from the supply side relying heavily on independent innovation and talent, and the demand side relying heavily on the upgrading of domestic consumption and exports.


Asunto(s)
Desarrollo Económico , Industrias , Anciano , Humanos , China , Inversiones en Salud , Tecnología
18.
Org Biomol Chem ; 20(45): 8838-8842, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36321976

RESUMEN

We herein describe a nickel-catalyzed cascade hydrosilylation/cyclization reaction of 1,7-enynes with bulky triphenylsilane. A series of silyl-containing quinolinone derivatives are obtained in good to excellent yields under mild reaction conditions. This reaction also features excellent chemoselectivity, broad functional group tolerance, and gram-scale synthesis.

19.
Front Vet Sci ; 9: 984703, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187824

RESUMEN

Alternative splicing (AS) allows the generation of multiple transcript variants from a single gene and affects biological processes by generating protein diversity in organisms. In total, 41,642 AS events corresponding to 9,924 genes were identified, and SE is the most abundant alternatively spliced type. The analysis of functional categories demonstrates that alternatively spliced differentially expressed genes (DEGs) were enriched in the MAPK signaling pathway and hypoxia-inducible factor 1 (HIF-1) signaling pathway. Proteoglycans in cancer between the normoxic (21% O2, TN and LN) and hypoxic (2% O2, TL and LL) groups, such as SLC2A1, HK1, HK2, ENO3, and PFKFB3, have the potential to rapidly proliferate alveolar type II epithelial (ATII) cells by increasing the intracellular levels of glucose and quickly divert to anabolic pathways by glycolysis intermediates under hypoxia. ACADL, EHHADH, and CPT1A undergo one or two AS types with different frequencies in ATII cells between TN and TL groups (excluding alternatively spliced DEGs shared between normoxic and hypoxic groups), and a constant supply of lipids might be obtained either from the circulation or de novo synthesis for better growth of ATII cells under hypoxia condition. MCM7 and MCM3 undergo different AS types between LN and LL groups (excluding alternatively spliced DEGs shared between normoxic and hypoxic groups), which may bind to the amino-terminal PER-SIM-ARNT domain and the carboxyl terminus of HIF-1α to maintain their stability. Overall, AS and expression levels of candidate mRNAs between Tibetan pigs and Landrace pigs revealed by RNA-seq suggest their potential involvement in the ATII cells grown under hypoxia conditions.

20.
Sci Total Environ ; 849: 157916, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35963412

RESUMEN

The nitrogen­phosphorus (N-P) imbalance induced by N enrichment has received increasing concerns, because N:P ratios play a critical role in driving many fundamental ecological processes. Given the simultaneous occurrence of different global change drivers, it is important to understand whether and how would such N-induced N-P imbalance would be mediated by other global change factors. We examined the interactive effects of N addition (10 g N m-2 yr-1) and extreme drought (-66 % rainfall during the growing season) on species- and community-level N:P ratios in both green and senesced leaves in a temperate grassland of northern China. Extreme drought did not alter soil available N:P ratio under ambient N conditions, but increased that under N enriched conditions. Further, extreme drought did not alter the community-level N:P in both green and senesced leaves under ambient N conditions but significantly enhanced that under N enriched conditions. The drought-induced species turnover made a significant positive contribution to the changes in the community-level N:P ratio under N enriched conditions, but not under ambient N conditions. Our results suggest that the N-induced ecosystem N-P imbalance would be exacerbated by extreme drought event, the frequency of which is predicted to increase across global drylands. Such N-P imbalance would have consequences on litter decomposition, nutrient cycling, and the structures of above- and below-ground food webs. Our findings highlighted the complexity in predicting ecosystem N-P imbalance given the interactions between different global change drivers.


Asunto(s)
Nitrógeno , Fósforo , Sequías , Ecosistema , Pradera , Nitrógeno/farmacología , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...